Q12 * Astrophysik * Sternentwicklung

C. Rote Riesen

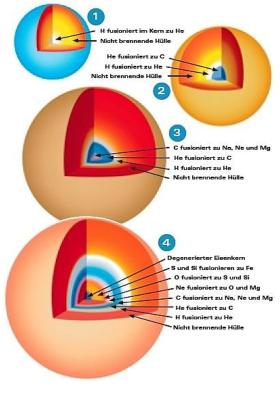
Wasserstoff im Kern nahezu "verbraucht", d.h. zu Helium fusioniert \rightarrow Strahlungsdruck lässt nach \rightarrow Stern kontrahiert \rightarrow Gravitationsenergie wird frei \rightarrow Temperatur steigt \rightarrow ab etwa 100 Millionen K beginnt das "Heliumbrennen" (Drei-Alpha-Prozess), d.h. He wird zu C fusioniert (s.u.) \rightarrow Gas- und Strahlungsdruck nimmt zu \rightarrow Stern dehnt sich erheblich aus \rightarrow Oberflächentemperatur nimmt dabei ab \rightarrow Leuchtkraft nimmt deutlich zu (L \sim R²) \rightarrow periodische Leuchtkraft- und Oberflächentemperaturänderung wegen "Gleichgewichtsstörungen" beim Übergang vom Hauptreihen zum Riesenstadium (so genannte "Pulsationsveränderliche" mit Perioden von 2d bis 50d)

Erklären Sie den Namen "Drei-Alpha-Prozess" für die folgende Fusionsreaktion!

He 4 + He 4
$$\rightarrow$$
 Be 8 + γ - 0,09 MeV

$$Be~8~+~He~4~\rightarrow~C~12~+~\gamma~+~7~MeV$$

Ist der Heliumvorrat im Kern verbraucht (und die Sternmasse groß genug) erfolgt nach weiterer Kontraktion und Temperaturzunahme im Kern das "Kohlenstoffbrennen", d.h. nun wird C fusioniert.

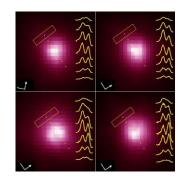

In konzentrischen Hüllen um den Kern wird H und He fusioniert.

In immer kürzer werdenden Zeiträumen wird Neon, dann Sauerstoff, und schließlich Schwefel und Silizium fusioniert.

Der Fusionsprozess endet, wenn im Kern des Sterns Eisen entsteht, denn die Fusion von Eisen benötigt Energie.

Für einen Stern mit 18-facher Sonnenmasse gilt:

Brennstoff	typische Temperatur	Brenndauer
H – Brennen	40 Millionen Kelvin 190 Millionen Kelvin	10 Millionen Jahre 1 Million Jahre
C – Brennen	740 Millionen Kelvin	10 000 Jahre
Ne – Brennen	1,6 Milliarden Kelvin	10 Jahre
O – Brennen	2,1 Milliarden Kelvin	5 Jahre
Si – Brennen	3,4 Milliarden Kelvin	7 Tage
Fusion schwerer		
Elemente	10 Milliarden Kelvin	Supernova – Explosion

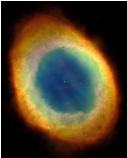


Aufgabe

Beteigeuze im Sternbild Orion ist ein Pulsationsveränderlicher und etwa 600 Lj entfernt.

Der Winkeldurchmesser des Sterns schwankt etwa zwischen 0,026" und 0,042" mit einer halbregelmäßigen Periode von ca. 2000 Tagen, die scheinbare Helligkeit nimmt Werte zwischen 0,3 und 0,6 an. Die Oberflächentemperatur beträgt etwa 3500K.

- a) Berechnen Sie den maximalen und den minimalen Sternradius von Beteigeuze in Vielfachen der Astronomischen Einheit.
- b) Welche relative maximale bzw. minimale Leuchtkraft L* hat Beteigeuze?
- c) Für die Masse von Beteigeuze findet man 20 Sonnenmassen angegeben. Warum stimmt dieser Wert nicht überein mit dem Wert, der sich aus der Masse-Leuchtkraft-Beziehung ergibt?

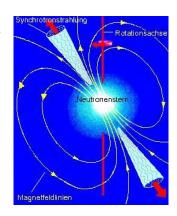

Pulsationen im UV-Bereich aufgenommen mit Hubble

D. Endzustände von Sternen

Der Endzustand eines Sterns hängt im Wesentlichen von seiner Masse ab.

Rote Riesen stoßen oft einen großen Teil der äußeren, weit vom Kern entfernten Hülle ab. Es entsteht ein so genannter **Planetarischer Nebel**. Die expandierende Gashülle wird vom zurückbleibenden heißen Weißen Zwerg zum Leuchten angeregt. Planetarische Nebel sind nur wenige tausend Jahre zu beobachten.

Weiße Zwerge

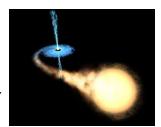

Sternmasse < 1,4 Sonnenmassen → nach dem Heliumbrennen keine weitere Fusion mehr möglich → fehlender Gasdruck → Gravitationskollaps → Stern wird auf die Größe der Erde komprimiert (entartetes Elektronengas liefert schließlich den Gegendruck) → Dichte liegt nun bei bis zu einer Tonne pro cm³ → Kern des Roten Riesen ist zu einem Weißen Zwerg geschrumpft → Weißer Zwerg kühlt langsam ab (in 1 bis 10 Milliarden Jahren) und ist dann nicht mehr zu beobachten.

Aufgabe: Zeigen Sie, dass Sirius B (Spektralklasse A2) mit den Daten $L^* \approx 0,002$ und $m^* \approx 1$ ein kleiner Stern sein muss. Berechnen Sie auch seine Dichte!

Neutronensterne (Pulsare)

1,4 Sonnenmassen < Sternmasse < 2 bis 3 Sonnenmassen \rightarrow Gravitationskollaps kann durch entartetes Elektronengas nicht gestoppt werden \rightarrow Protonen und Elektronen bilden Neutronen (inverser Beta-Zerfall) \rightarrow Druck des entarteten Neutronengases stoppt den Kollaps \rightarrow Kern des Roten Riesen ist zu einem großen Atomkern (aus Neutronen) geschrumpft \rightarrow etwa 10^8 Tonnen pro cm 3 \rightarrow Radius ca. 20km \rightarrow Neutronenstern nicht direkt beobachtbar.

Beim Kollaps nimmt die Rotation des Sterns erheblich zu (Drehimpulserhaltung) \rightarrow bis zu 1000 Umdrehungen pro Sekunde \rightarrow auch Magnetfeld wird extrem stark (bis zu 10^8 Tesla) \rightarrow Stimmt Rotationsachse nicht mit Magnetfeldachse überein, so werden Elektronen auf Schraubenlinien um Magnetfeldlinien auf


nahezu Lichtgeschwindigkeit beschleunigt. → Elektronen senden dabei Synchrotronstrahlung in einem engen, rotierenden Kegel aus. → Befindet man sich im vom Strahlungskegel überstrichen Bereich, so empfängt man Strahlungspulse in exakt gleichen Zeitintervallen. → Kern des Roten Riesen ist zu einem Pulsar geworden. Da die Energie der Strahlung aus der Rotation stammt, nimmt die Rotationsdauer pro Tag etwa einige Nanosekunden ab.

Aufgabe:

- a) Welche Dichte hat ein Proton mit der Masse 1,7 · 10⁻²⁷ kg und dem Radius 1,4 · 10⁻¹⁵ m?
- b) Welchen Radius hätte die Sonne, wenn man sie auf die Dichte eines Neutronensterns mit ca. 10⁸ t/cm³ komprimieren könnte?
- c) Eine rotierende Kugel der Masse M soll pro Sekunde 100 Umdrehungen ausführen. Welche Dichte muss die Kugel mindestens aufweisen, damit sie durch die Gravitationskraft zusammengehalten werden kann?

Stellare Schwarze Löcher (Kollapsare)

Reststernmassen > 2 bis 3 Sonnenmassen → Kollaps kann auch nicht durch Druck des entarteten Neutronengases gestoppt werden. → Physikalische Aussage über das, was aus dem Stern entsteht, ist nicht möglich. → Selbst Licht kann aus dem Schwarzen Loch nicht entweichen → Schwarze Löcher sind nur indirekt beobachtbar. Im Doppelsternsystem Cygnus X-1 ist eine Komponente ein Schwarzes Loch.

Aufgabe: Der Schwarzschildradius $R_S = \frac{2 \cdot G \cdot M}{c^2}$ gibt an, innerhalb welchen Abstands ein Photon eine Masse

M nicht mehr verlassen kann. Bestimmen Sie für die Masse unserer Sonne den Schwarzschildradius!